
ber
Benchmarking and Comparison of the Task Graph
Scheduling Algorithms†

Yu-Kwong Kwok1 and Ishfaq Ahmad2

1Department of Electrical and Electronic Engineering

The University of Hong Kong, Pokfulam Road, Hong Kong

2Department of Computer Science

The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong

Email:ykwok@eee.hku.hk, iahmad@cs.ust.hk

Corresponding Author: Ishfaq Ahmad

Submitted toJournal of Parallel and Distributed Computing

Revised: March 17, 1999

Abstract
The problem of scheduling a parallel program represented by a weighted directed acyclic

graph (DAG) to a set of homogeneous processors for minimizing the completion time of the

program has been extensively studied. The NP-completeness of the problem has stimulated

researchers to propose a myriad of heuristic algorithms. While most of these algorithms are

reported to be efficient, it is not clear how they compare against each other. A meaningful

performance evaluation and comparison of these algorithms is a complex task and it must take

into account a number of issues. First, most scheduling algorithms are based upon diverse

assumptions, making the performance comparison rather purposeless. Second, there does not

exist a standard set of benchmarks to examine these algorithms. Third, most algorithms are

evaluated using small problem sizes, and, therefore, their scalability is unknown. In this paper,

we first provide a taxonomy for classifying various algorithms into distinct categories

according to their assumptions and functionalities. We then propose a set of benchmarks that

are based on diverse structures and are not biased towards a particular scheduling technique.

We have implemented 15 scheduling algorithms and compared them on a common platform

by using the proposed benchmarks as well as by varying important problem parameters. We

interpret the results based upon the design philosophies and principles behind these

algorithms, drawing inferences why some algorithms perform better than the others. We also

propose a performance measure called the scheduling scalability (SS) that captures the collective

effectiveness of a scheduling algorithm in terms of its solution quality, the number of

processors used, and the running time.

Keywords: performance evaluation, benchmarks, multiprocessors, parallel processing,

scheduling, task graphs, scalability.

† This research was supported by a grant from the Hong Kong Research Grants Council under contract num
HKUST 734/96E and HKUST 6076/97E. A preliminary version of this work was presented at the 12th
International Parallel Processing Symposium (IPPS’98), Orlando, FL, USA.
- 1 -



1  Introduction
The problem of scheduling a weighted directed acyclic graph (DAG), also called a task

graph or macro-dataflow graph, to a set of homogeneous processors in order to minimize the

completion time, has intrigued researchers for quite some time [22]. The problem is NP-

complete in its general forms [18], and polynomial-time solutions are known only for a few

restricted cases [13], [17]. Since tackling the scheduling problem in an efficient manner is

imperative for achieving a meaningful speedup from a parallel or distributed system, it

continues to spur interest among the research community. Considerable research efforts

expended in solving the problem have resulted in a myriad of heuristic algorithms. While each

heuristic is individually reported to be efficient, it is not clear how these algorithms compare

against each other on a unified basis.

The objectives of this study include proposing a set of benchmarks and using them to

evaluate the performance of a set of DAG scheduling algorithms (DSAs) with various

parameters and performance measures. Since a large number of DSAs have been reported in

the literature with radically different assumptions, it is important to demarcate these

algorithms into various classes according to their assumptions about the program and

machine model. A performance evaluation and comparison study of DSAs should provide

answers to the following questions:

• What are the important performance measures? The performance of a DSA is usually

measured in terms of the quality of the schedule (the total duration of the schedule) and the

running time of the algorithm. Sometimes, the number of target processors allocated is also

taken as a performance parameter. One problem is that usually there is a trade-off between

the first two performance measures, that is, efforts to obtain better solution often incur a

higher time-complexity. On one extreme, one can try to find an optimal or close-to-optimal

solution using for instance a branch-and-bound technique [24] or other time consuming

search methods. On the other extreme, one can try to employ a fast technique which can

yield an adequate solution. Furthermore, using more processors can possibly result in a

better solution. Another problem is that most algorithms are evaluated using small problem

sizes, and it is not very clear how they scale with the problem size. Thus, there is a need to

determine a performance measure that should be an indicative parameter of a DSA’s

scalability as well as of the trade-off between its solution quality and running time.

• What problem parameters affect the performance? The performance of DSAs, in general,

tends to bias towards the problem graph structure. In addition, other parameters such as the

communication-to-computation ratio, the number of nodes and edges in the graph, and the

number of target processors also affect the performance. Thus, it is important to measure the

performance of DSAs by robustly testing them with various ranges of such parameters.

• What benchmarks should be used? There does not exist a set of benchmarks that can be
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considered as a standard to evaluate and compare various DSAs on a unified basis. The

most common practice is to use random graphs. The use of task graphs derived from

various parallel applications is also common. However, again in both cases, there is no

standard that can provide a robust set of test cases. Therefore, there is a need for a set of

benchmarks that are representative of various types of synthetic as well as real test cases.

These test cases should be diverse without being biased towards a particular scheduling

technique and should allow variations in important parameters.

• How does the performance of DSAs vary? Since most DSAs are based on heuristics

techniques, bounds on their performance levels and variations from the optimal solution are

not known. In addition, the average, worst, and best case performance of these algorithms is

not known. Furthermore, since the existing DSAs are based on different assumptions, they

must be segregated and evaluated within distinct categories.

• Why some algorithms perform better? Some qualitative and quantitative comparisons of

some DSAs have been carried out in the past (see [19], [25], [39]), but they mainly presented

experimental results without giving a rationale of why some algorithms performs well and

some do not. The previous studies were also limited to a few algorithms and did not make a

comprehensive evaluation. The design philosophies and characteristics of various

algorithms must be understood in order to assess their merits and deficiencies. The

qualitative analyses can stem some future guidelines for designing even better heuristics.

In this paper, we describe a performance study of various DSAs with the aim of providing

answers to the questions posed above. First, we define the DAG scheduling problem and

provide an overview of various fundamentals scheduling techniques and attributes that are

shared by a vast number of DSAs. Next, we provide a chronological summary and a taxonomy

of various DSAs reported in the literature. Since a survey on this topic is not the objective, the

purpose of this taxonomy is to set a context where in we select a set of algorithms for

benchmarking. We select 15 algorithms and examine their salient characteristics. We have

implemented these algorithms on a common platform and tested them using the same suite of

benchmark task graphs with a wide range of parameters. We make comparisons within each

group whereby these algorithms are ranked from the performance and complexity

standpoints. We also define a new performance measure called the scheduling scalability which

captures the collective effectiveness of a scheduling algorithm in terms of its solution quality,

the number of processors used and the running time.

The rest of this paper is organized into six sections. In the next section, we describe the

generic DAG model. In Section 3, we describe the basic scheduling techniques and a number

of concepts that can be used to explain various algorithms in the later discussion. Section 4

provides a taxonomy and a brief survey of various DSAs. The same section also includes brief

descriptions and characteristics of the DSAs chosen for our performance study. Section 5
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describes a set of benchmarks that we propose and subsequently use for performance

evaluation. Section 6 includes the results and comparisons and Section 7 concludes the paper.

2  The Model
We consider the general model assumed for a task graph that has been commonly used by

many researchers (see [10], [13] for explanation). Some simplifications in the model are

possible, and will be introduced later. We assume the system consists of a number of identical

(homogeneous) processors. Although scheduling on heterogeneous processors is also an

interesting problem, we confine the scope of this study to homogeneous processors only. The

number of processors could be limited (given as an input parameter to the scheduling

algorithm) or unlimited.

The DAG is a generic model of a parallel program consisting of a set of processes (nodes)

among which there are dependencies. A small example DAG is shown in Figure 1. Formally, a

DAG consists of nodes, , that can be executed on any of the available

processors. A node in the DAG represents a task which in turn is a set of instructions that must

be executed sequentially without preemption in the same processor. A node has one or more

inputs. When all inputs are available, the node is triggered to execute. After its execution, it

generates its outputs. A node with no parent is called an entry node and a node with no child

is called an exit node. The weight on a node is called the computation cost of a node and is

denoted by . The graph also has directed edges representing a partial order among the

tasks. The partial order introduces a precedence-constrained directed acyclic graph (DAG) and

implies that if , then is a child which cannot start until its parent finishes and

sends its data to . The weight on an edge is called the communication cost of the edge and is

denoted by . This cost is incurred if and are scheduled on different processors

and is considered to be zero if and are scheduled on the same processor. The

communication-to-computation-ratio (CCR) of a parallel program is defined as its average

communication cost divided by its average computation cost on a given system.

The node and edge weights are usually obtained by estimation [15], [42] for which the

parameters are determined using benchmark profiling techniques [23]. Scheduling of a DAG is

performed statically (i.e., at compile-time) since the information about the DAG structure and

costs associated with nodes and edges must be available a priori.

If node is scheduled to processor P, and denote the start time and

finish time of on processor , respectively. After all nodes have been scheduled, the

schedule length is defined as across all processors. The objective of DAG

scheduling is to find an assignment and the start times of tasks to processors such that the
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schedule length is minimized such that the precedence constraints are preserved.

3  Characteristics of Scheduling Algorithms
The general DAG scheduling problem has been shown to be NP-complete [18], and

remains intractable even with severe assumptions applied to the task and machine models

[32], [34], [41]. Nevertheless, polynomial-time algorithms for some special cases have been

reported: Hu [20] devised a linear-time algorithm to solve the problem of scheduling a

uniform node-weight free-tree to an arbitrary number of processors. Coffman and Graham

[13] devised a quadratic-time algorithm to solve the problem of scheduling an arbitrarily

structured DAG with uniform node-weights to two processors. The third case is to schedule an

interval-ordered DAG with uniform node-weights to an arbitrary number of processors. A DAG

is called interval-ordered if every two precedence-related nodes can be mapped to two non-

overlapping intervals on the real number line. Papadimitriou and Yannakakis [33] designed a

linear-time algorithm to tackle the problem. In all these three cases, communication between

tasks is ignored. Recently, Ali and El-Rewini [6] showed that interval-ordered DAG with

uniform edge weights, which are equal to the node weights, can also be optimally scheduled

in polynomial-time.

In view of the intractability of the problem, researchers have resorted to designing efficient

heuristics which can find good solutions within a reasonable amount of time. Most scheduling

heuristic algorithms are based on the list scheduling technique. The basic idea in list scheduling

is to assign priorities to the nodes of the DAG and place the nodes in a list arranged in

descending order of priorities. The node with a higher priority is examined for scheduling

before a node with a lower priority; if more than one node has the same priority, ties are

broken using some method.

There are, however, numerous variations in the methods of assigning priorities and

maintaining the ready list, and criteria for selecting a processor to accommodate a node. We

describe below some of these variations and show that they can be used to characterize most

scheduling algorithms.

Assigning Priorities to Nodes: Two major attributes for assigning priorities are the t-level

(top level) and b-level (bottom level). The t-level of a node is the length of the longest path

from an entry node to in the DAG (excluding ). Here, the length of a path is the sum of all

the node and edge weights along the path. The t-level of highly correlates with ’s earliest

start time, denoted by , which is determined after is scheduled to a processor. The t-

level of a node is a dynamic attribute because the weight of an edge may be zeroed when the

two incident nodes are scheduled to the same processor. Thus, the path reaching a node,

ni

ni ni

ni ni

TS ni( ) ni
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whose length determines the t-level of the node, may cease to be the longest one.

The b-level of a node is the length of the longest path from node to an exit node and is

bounded by the length of the critical path. A critical path (CP) of a DAG, is a path from an entry

node to an exit node, whose length is the maximum. In Figure 1(a), the edges of the CP are

shown with thick arrows.

Variations in the computation of the b-level of a node are possible. Most DSAs examine a

node for scheduling only after all the parents of the node have been scheduled. In this case, the

b-level of a node is a constant until after it is scheduled to a processor. However, some

algorithms allow the scheduling of a child before its parents. In that case, the b-level of a node

becomes a dynamic attribute. In these algorithms, the value of for any node is not

fixed until all the nodes are scheduled, allowing the insertion of a node to a time slot created

by pushing some earlier scheduled nodes downward. It should be noted that some scheduling

algorithms do not take into account the edge weights in computing the b-level. To distinguish

such a definition of b-level from the one described above, we call it the static b-level or simply

static level (SL).

Different DSAs have used the t-level and b-level attributes in a variety of ways. Some

algorithms assign a higher priority to a node with a smaller t-level while some algorithms

assign a higher priority to a node with a larger b-level. Still some algorithms assign a higher

priority to a node with a larger (b-level – t-level). In general, scheduling in descending order of

b-level tends to schedule critical path nodes first while scheduling in ascending order of t-level

tends to schedule nodes in a topological order. The composite attribute (b-level – t-level) is a

compromise between the previous two cases. The attributes for the example DAG are shown

in Figure 1(b). Note that the nodes of the CP ( which are marked by an asterisk) can
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Figure 1: (a) A task graph; (b) The static levels (SLs), t-levels, b-levels and ALAPs of the nodes.
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be identified with their values of (t-level + b-level) because all of them have the maximum value

23.

When determining the start time of a node on a processor , some algorithms only

consider scheduling a node after the last node on . Some algorithms also consider other idle

time slots on  and may insert a node between two already scheduled nodes.

Critical-Path-Based vs. Non-Critical-Path-Based: Critical-path-based algorithms

determine scheduling order or give a higher priority to a critical-path node (CPN). Non-

critical-path-based algorithms do not give special preference to CPNs; they assign priorities

simply based on the levels or other attributes of the nodes.

Static List vs. Dynamic List: The set of ready nodes are often maintained as a ready list.

Initially, the ready list includes only the entry nodes. After a node is scheduled, the nodes

freed by the scheduled node are inserted into the ready list such that the list is sorted in

descending order of node priorities. The list can be maintained in two ways: A ready list is

static if it is constructed before scheduling starts and remains the same throughout the whole

scheduling process. A ready list is called dynamic if it is rearranged according to the changing

node priorities.

Greedy vs. Non-Greedy: In assigning a node to a processor, most scheduling algorithms

attempt to minimize the start-time of a node. This is a greedy strategy. However, some

algorithms do not necessarily minimize the start-time of a node but consider other factors as

well.

Time-Complexity: The time-complexity of a DSA is usually expressed in terms of the

number of node, , the number of edges, , and the number of processors, . The major steps

in an algorithm include a traversal of the DAG and a search of slots in the processors to place a

node. Simple static priority assignment in general results in a lower time-complexity while

dynamic priority assignment inevitably leads to a higher time-complexity of the scheduling

algorithm. Backtracking can incur a very high time complexity and thus is not usually

employed.

4  A Classification of DAG Scheduling Algorithms
The static DAG scheduling problem has been tackled with large variations in the task

graph and machines models. Table 1 provides a classification and chronological summary of

various static DSAs. Since it is not the purpose of this paper to provide a survey of such

algorithms, this summary is by no means complete (a more extensive taxonomy on the general

scheduling problem has been proposed in [10]). Furthermore, a complete overview of the

literature is beyond the scope of this paper. Nevertheless, we believe our classification scheme

P

P

P

v e p
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can be extended to most of the reported DSAs.

Earlier algorithms have made radically simplifying assumptions about the task graph

representing the program and the model of the parallel processor system [1], [13]. These

algorithms assume the graph to be of a special structure such as a tree, forks-join, etc. In

general, however, parallel programs come in a variety of structures, and as such many recent

algorithms are designed to tackle arbitrary graphs. These algorithms can be further divided

into two categories. Some algorithms assume the computational costs of all the tasks to be

uniform ([13], [20]) whereas other algorithms assume the computational costs of tasks to be

Table 1: A partial taxonomy of the multiprocessor scheduling problem.

Algorithm Special
Graph
Structure

Unit
Comput-
ational
Costs

With
Comm-
unication

Duplication Unlimited
Number of
Processors

Processors
Network
Topology

Scheduling for Restricted Graphs

Hu’s algorithm (1961) [20] Tree Yes No No Yes Clique

Papadimitriou and Yannakakis’s Interval-Order

algorithm (1979) [33]

Interval-

order

Yes No No Yes Clique

Coffman and Graham’s 2-Processor algorithm (1972)

[13]

— Yes No No Yes Clique

Ali and El-Rewini’s Interval-Order algorithm (1993)

[6]

Interval-

order

Yes Yes No Yes Clique

Dynamic Prog. Scheduling by Rammamoorthy et

al.(1972) [36]

— No No No Yes Clique

Level-based algorithms by Adam et al. (1974) [1] — No No No Yes Clique

CP/MISF by Kasahara & Narita (1984) [24] — No No No Yes Clique

DF/IHS by Kasahara & Narita (1984) [24] — No No No Yes Clique

Scheduling for Unrestricted Graphs

Task Duplication Based (TDB) Scheduling Algorithms

DSH by Kruatrachue & Lewis (1988) [27] — No Yes Yes Yes Clique

PY by Papadimitriou & Yannakakis (1990) [34] — No Yes Yes Yes Clique

LWB by Colin & Chretienne (1991) [14] — No Yes Yes Yes Clique

BTDH by Chung & Ranka (1992) [12] — No Yes Yes Yes Clique

LCTD by Chen et al. (1993) [11] — No Yes Yes Yes Clique

CPFD by Ahmad & Kwok (1994) [2] — No Yes Yes Yes Clique

MJD by M. Palis et al. (1996) [32] — No Yes Yes Yes Clique

DFRN by Park et al. (1997) [35] — No Yes Yes Yes Clique

Unbounded Number of Clusters (TDB) Scheduling Algorithms

LC by Kim & Browne (1988) [26] — No Yes No Yes Clique

EZ by Sarkar (1989) [37] — No Yes No Yes Clique

MD by Wu & Gajski (1990) [42] — No Yes No Yes Clique

DSC by Yang & Gerasoulis (1994) [43] — No Yes No Yes Clique

DCP by Kwok & Ahmad (1996) [28] — No Yes No Yes Clique

Bounded Number of Processors (BNP) Scheduling Algorithms

HLFET by Adam et al. (1974) [1] — No Yes No No Clique

ISH by Kruatrachue & Lewis (1987) [27] — No Yes No No Clique

CLANS by McCreary & Gill (1989) [30] — No Yes No No Clique

LAST by Baxter & Patel (1989) [9] — No Yes No No Clique

ETF by Hwang et al. (1989) [21] — No Yes No No Clique

MCP by Wu & Gajski (1990) [42] — No Yes No No Clique

Arbitrary Processor Network (APN) Scheduling Algorithms

DLS by Sih & Lee (1993) [40] — No Yes No No Arbitrary

BU by Mehdiratta & Ghose (1994) [31] — No Yes No No Arbitrary

MH by El-Rewini & Lewis (1995) [16] — No Yes No No Arbitrary
- 8 -



gle
arbitrary. Some of the earlier work has also assumed the inter-task communication to be zero,

that is, the task graph contains precedence but without cost. The problem becomes less

complex in the absence of communication delays. Furthermore, scheduling with

communication delays is NP-complete.

Scheduling with communication may be done using duplication or without duplication.

The rationale behind the task-duplication based (TDB) scheduling algorithms is to reduce the

communication overhead by redundantly allocating some nodes to multiple processors. In

duplication-based scheduling, different strategies can be employed to select ancestor nodes for

duplication. A common technique, however, is to recursively duplicate ancestor nodes in a

bottom-up fashion, as is done in the recently proposed DFRN algorithm [35]. A more extensive

discussion and evaluation of TDB scheduling algorithms can be found in [2].

Non-TDB algorithms assuming arbitrary task graphs with arbitrary costs on nodes and

edges can be divided in two categories: Some scheduling algorithms assume the availability of

unlimited number of processors, while some other algorithms assume a limited number of

processors. The former class of algorithms are called the UNC (unbounded number of clusters)

scheduling algorithms [5] and the latter the BNP (bounded number of processors) scheduling

algorithms [5]. In both classes of algorithms, the processors are assumed to be fully-connected

and no attention is paid to link contention or routing strategies used for communication. The

technique employed by the UNC algorithms is also called clustering (see [16], [19], [26], [32],

[44] for details). At the beginning of the scheduling process, each node is considered a cluster.

In the subsequent steps, two clusters† are merged if the merging reduces the completion time.

This merging procedure continues until no cluster can be merged. The rationale behind the

UNC algorithms is that they can take advantage of using more processors to further reduce the

schedule length. However, the clusters generated by the UNC may need a post-processing

step for mapping the clusters onto the processors because the number of processors available

may be less than the number of clusters.

A few algorithms have been designed to take into account the most general model in

which the system is assumed to consist of an arbitrary network topology, of which the links

are not contention-free. These algorithms are called the APN (arbitrary processor network)

scheduling algorithms [5]. In addition to scheduling tasks, the APN algorithms also schedule

messages on the network communication links.

To narrow the scope of this paper, we do not consider TDB algorithms (for a more detailed

overview of such algorithm, see [2]).

† We use the term cluster and processor interchangeably since in the UNC scheduling algorithms, merging a sin
node cluster to another cluster is analogous to scheduling a node to a processor.
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4.1  BNP Scheduling Algorithms

In the following, we discuss six BNP scheduling algorithms: HLFET [1], ISH [27], MCP

[42], ETF [21], DLS [40], and LAST [9]. The major characteristics of these algorithms are

summarized in Table 2. In the table, denotes the number of processors given. Some of the

complexities do not have this parameter because the algorithms use  processors.

The HLFET Algorithm: The HLFET (Highest Level First with Estimated Times) algorithm

[1] is one of the simplest scheduling algorithms. The algorithm schedules a node to a processor

that allows the earliest start time. The main problem with HLFET is that in calculating the SL

of a node, it ignores the communication costs on the edges.

The ISH Algorithm: The ISH (Insertion Scheduling Heuristic) algorithm [27] uses a simple

but effective idea of using holes created by the partial schedules. The algorithm first picks an

unscheduled node with the highest SL and schedules it to a processor that allows the earliest

start time, and thus essentially possesses the same drawback as the HLFET algorithm. The ISH

algorithm tries to “insert” other unscheduled nodes from the ready list into the idle time slot

before the node just scheduled.

The MCP Algorithm: The MCP (Modified Critical Path) algorithm [42] uses the ALAP

time of a node as a priority. The ALAP time of a node is computed by first computing the

length of CP and then subtracting the b-level of the node from it. Thus, the ALAP times of the

nodes on the CP are just their t-levels. The MCP algorithm first computes the ALAP times of all

the nodes and then constructs a list of nodes in ascending order of ALAP times. Ties are

broken by considering the ALAP times of the children of a node. The algorithm then schedules

the nodes on the list one by one such that a node is scheduled to a processor that allows the

earliest start time using the insertion approach.

The ETF Algorithm: The ETF (Earliest Time First) algorithm [21] computes, at each step,

the earliest start times for all ready nodes and then selects the one with the smallest start time.

Here, the earliest start time of a node is computed by examining the start time of the node on

all processors exhaustively. When two nodes have the same value of their earliest start times,

the algorithm breaks the tie by scheduling the one with the higher SL. Thus, a node with a

higher SL does not necessarily gets scheduled first because the algorithm gives a higher

Table 2: Some of the BNP scheduling algorithms and their characteristics.

Algorithm Proposed by [year] Priority CP-Based List Type Greedy Complexity

HLFET Adam et al. [1974] SL No Static Yes

ISH Kruatrachue & Lewis [1987] SL No Static Yes

MCP Wu & Gajski [1990] ALAP Yes Static Yes

ETF Hwang et al. [1989] SL No Static Yes

DLS Sih & Lee [1993] SL - TS No Dynamic Yes

LAST Baxter & Patel [1989] edge weights No Dynamic Yes

p

O v( )

O v2( )

O v2( )

O v2 vlog( )

O pv3( )

O pv3( )

O v v e+( )( )
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priority to a node with the earliest start time.

The DLS Algorithm: The DLS (Dynamic Level Scheduling) algorithm [40] uses an

attribute called dynamic level (DL) which is the difference between the SL of a node and its

earliest start time on a processor. Then, similar to the ETF algorithm, the DLS algorithm

constructs a pool of ready nodes. At each scheduling step, the algorithm computes the DL for

every node in the ready pool on all processors. The node-processor pair that gives the largest

value of DL is selected for scheduling. This mechanism is very similar to the one used by the

ETF algorithm. However, there is one difference between the ETF algorithm and the DLS

algorithm: the former always schedules the node with the minimum earliest start time and

uses SL merely to break ties, while the latter tends to schedule nodes in descending order of

SLs at the beginning of scheduling process but tends to schedule nodes in ascending order of t-

levels (i.e., the earliest start times) near the end of the scheduling process.

The LAST Algorithm: The LAST (Localized Allocation of Static Tasks) algorithm [9] is not

a list scheduling algorithm, and uses for node priority an attribute called D_NODE, which

depends only on the incident edges of a node. The main goal of the LAST algorithm is to

minimize the overall communication. This goal, however, does not necessarily lead to the

minimization of the completion time. One of the consequences of using D_NODE is that a

node may be selected for scheduling before some of its parents. Thus, the earliest start time of

a node cannot be fixed until the scheduling process terminates. Furthermore, a node may need

to be inserted into any idle time slot on a processor. The LAST algorithm ignores node weights

in the node selection process.

4.2  UNC Scheduling Algorithms

We select five UNC scheduling algorithms, EZ [37], LC [26], DSC [44], MD [42], and DCP

[28], for our performance study. Table 3 includes some of the characteristics of these

algorithms.

The EZ Algorithm: The EZ (Edge-zeroing) algorithm [37] selects clusters for merging

based on edge weights. At each step, the algorithm finds the edge with the largest weight. The

two clusters incident by the edge are merged if the merging (thereby zeroing the largest

weight) does not increase the completion time. After two clusters are merged, the ordering of

Table 3: Some of the UNC scheduling algorithms and their characteristics.

Algorithm Proposed by [year] Priority List CP-Based Greedy Complexity

EZ Sarkar [1989] SL Dynamic No No

LC Kim & Browne [1988] SL + t-level Static Yes No

DSC Yang & Gerasoulis [1994] SL + t-level Dynamic Yes Yes

MD Wu & Gajski [1990] b-level + t-level Dynamic Yes No

DCP Kwok & Ahmad [1994] b-level + t-level Dynamic Yes No

O e v e+( )( )

O v v e+( )( )

O e v+( ) vlog( )

O v3( )

O v3( )
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nodes in the resulting cluster is based on the SLs of thenodes.

The LC Algorithm: The LC (Linear Clustering) algorithm [26] merges nodes to form a

single cluster based on the CP. The algorithm first determines the set of nodes constituting the

CP. It then schedules all of the CP nodes to a single processor at once. These nodes and all

edges incident on them are then removed from the DAG. The algorithm zeroes the edges on

the entire CP at once. However, when an edge is zeroed, the CP may change. The edge that

should be zeroed next may not be on the original CP.

The DSC Algorithm: The DSC (Dominant Sequence Clustering) algorithm [44] considers

the Dominant Sequence (DS) of a graph. The DS is simply the CP of the partially scheduled

DAG. The DSC algorithm tracks the CP of the partially scheduled DAG at each step by using

the composite attribute (b-level + t-level) as the priority of a node. The DSC algorithm does not

select the node with the highest priority for scheduling unless the node is ready. This is done

in order to lower the time complexity of the algorithm because the t-level of a node can be

computed incrementally and the b-level does not change until the node is scheduled. The

algorithm scans through all clusters to find the one that allows the minimum start time of the

node provided that such selection will not delay the start time of a not yet scheduled CP node.

The MD Algorithm: The MD (Mobility Directed) algorithm [42] selects a node for

scheduling based on an attribute called the relative mobility, which is defined as:

If a node is on the current CP of the partially scheduled DAG, the sum of its b-level and t-

level is equal to the current CP length. Thus, the relative mobility of a node is zero if it is on the

current CP. At each step, the MD algorithm selects the node with the smallest relative mobility

for scheduling. In testing whether a cluster can accommodate a node, the MD algorithm scans

from the earliest idle time slot on the cluster and schedules the node into the first idle time slot

that is large enough for the node. An idle time slot can be created or made larger by possibly

pulling some already scheduled nodes downward.

The DCP Algorithm: The DCP (Dynamic Critical Path) algorithm [28] is designed based

on an attribute which is similar to relative mobility. The DCP algorithm uses a look-ahead

strategy to find a better cluster for a given node. In addition to computing the value of

on a cluster, the DCP algorithm also computes the value of on the same cluster, where,

nc is the child of ni that has the largest communication and is called the critical child of ni. The

DCP algorithm schedules ni to the cluster that gives the minimum value of the sum of these

two attributes. This look-ahead strategy can potentially avoid scheduling a node to a cluster

that has no room to accommodate a heavily communicated child of the node. The DCP

ni

Cur_CP_Length b-levelni( ) t-level ni( )+( )–
w ni( )------------------------------------------------------------------------------------------------------------

TS ni( )

TS nc( )
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algorithm examines all the existing clusters for a node while the MD algorithm only tests from

the first cluster and stops after finding one that has a large enough idle time slot.

4.3  APN Scheduling Algorithms

In the following, we discuss four such algorithms, namely, the MH [16], DLS [40], BU [31]

and BSA [3] algorithm. Some of their characteristics are given in Table 4.

The MH Algorithm: The MH (Mapping Heuristic) algorithm [16] initializes a ready node

list that contains all entry nodes ordered in decreasing priorities. Each node is scheduled to a

processor that gives the smallest start time. In calculating the start time of a node, a routing

table is maintained for each processor. The table contains the information as to which path to

route messages from the parent nodes to the nodes under consideration. After a node is

scheduled, all of its ready successor nodes are appended to the ready node list.

The DLS Algorithm: The DLS (Dynamic Level Scheduling) algorithm [40] described

earlier can also be used as an APN scheduling algorithm. To use it as a APN scheduling

algorithm, it requires the message routing method to be supplied by the user. The of a node

is then computed according to how the messages from the parents of the node are routed.

The BU Algorithm: The BU (Bottom-Up) algorithm [31] first finds the CP of the DAG and

then assigns all the nodes on the CP to the same processor at once. Afterwards, the algorithm

assigns the remaining nodes in a reversed topological order to the processors. The node

assignment is guided by a load-balancing processor selection heuristic which attempts to

balance the load across all given processors. After all the nodes are assigned to some

processors, the BU algorithm tries to schedule the communication messages among them

using a channel allocation heuristic which tries to keep the hop count of every message

roughly a constant constrained by the processor network topology. Different network

topologies require different channel allocation heuristics.

The BSA Algorithm: The BSA (Bubble Scheduling and Allocation) algorithm [3]

constructs a schedule incrementally by first injecting all the nodes to the pivot processor,

defined as the processor with the highest degree. The algorithm then tries to improve the start

time of each node (hence “bubbling” up nodes) by transferring it to one of the adjacent

processor of the pivot processor if the migration can improve the start time of the node. This is

because after a node migrates, the space it occupies on the pivot processor is released and can

Table 4: Some of the APN scheduling algorithms and their characteristics.

Algorithm Proposed by [year] Node Priority CP-Based Message Routing Complexity

MH El-Rewini & Lewis [1990] SL No Needs routing table

DLS Sih & Lee [1993] SL - TS Yes Needs routing table

BU Mehdiratta & Ghose [1994] — Yes Hard-coded

BSA Kwok & Ahmad [1994] — Yes Adaptive

O v p3v e+( )( )

O v3p2( )

O v2 vlog( )

O p2ev( )

TS
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be used for its successor nodes on the pivot processor. After all nodes on the pivot processor

are considered, the algorithm selects the next processor in the processor list to be the new pivot

processor. The process is repeated by changing the pivot processor in a breadth-first order.

5  Benchmark Graphs
In our study, we propose and use a suite of benchmark graphs consisting of 5 different sets.

The generation techniques and characteristics of these benchmarks are described as follows:

5.1  Peer Set Graphs

The Peer Set Graphs (PSGs) are example task graphs used by various researchers and

documented in publications. These graphs are usually small in size but are useful in that they

can be used to trace the operation of an algorithm by examining the schedule produced. A

detailed description of the graphs is provided in Section 6.1.

5.2  Random Graphs with Optimal Solutions

These are random graphs for which we have obtained optimal solutions using a branch-

and-bound algorithm. We call these graph random graphs with optimal solutions using branch-

and-bound (RGBOS). This suite of random task graphs consists of three subsets of graphs with

different CCRs (0.1, 1.0, and 10.0). Each subset consists of graphs in which the number of

nodes vary from 10 to 32 with increments of 2, thus, totalling 12 graphs per set. The graphs

were randomly generated as follows: First the computation cost of each node in the graph was

randomly selected from a uniform distribution with the mean equal to 40 (minimum = 2 and

maximum = 78). Beginning with the first node, a random number indicating the number of

children was chosen from a uniform distribution with the mean equal to . The

communication cost of each edge was also randomly selected from a uniform distribution

with the mean equal to 40 times the specified value of CCR. To obtain optimal solutions for the

task graphs, we applied a parallel A* algorithm [4] to the graphs. Since generating optimal

solutions for arbitrarily structured task graphs takes exponential time, it is not feasible to

obtain optimal solutions for large graphs.

5.3  Random Graphs with Pre-Determined Optimal Schedules

These are random graphs with pre-determined optimal solutions (RGPOS). The method of

generating graphs with known optimal schedules is as follows: Suppose that the optimal

schedule length of a graph and the number of processors used are specified as and p,

respectively. For each PE i, we randomly generate a number from a uniform distribution

with mean . The time interval between 0 and of PE i is then randomly partitioned into

sections. Each section represents the execution span of one task, thus, tasks are “scheduled”

to PE i with no idle time slot. In this manner, v tasks are generated so that every processor has

v 10⁄

Lopt

xi

v
p
--- Lopt xi

xi
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the same schedule length. To generate an edge, two tasks and are randomly chosen such

that . The edge is made to emerge from to . As to the edge weight, there

are two cases to consider: (i) the two tasks are scheduled to different processors, and (ii) the

two tasks are scheduled to the same processor. In the first case the edge weight is randomly

chosen from a uniform distribution with maximum equal to (the mean is

adjusted according to the given CCR value). In the second case the edge weight can be an

arbitrary positive integer because the edge does not affect the start and finish times of the tasks

which are scheduled to the same processor. We randomly chose the edge weight for this case

according to the given CCR value. Using this method, we generated three sets of task graphs

with three CCRs: 0.1, 1.0, and 10.0. Each set consists of graphs in which the number of nodes

vary from 50 to 500 in increments of 50; thus, each set contains 10 graphs.

5.4  Random Graphs without Optimal Schedules

The fourth set of benchmark graphs, referred to as random graphs with no known optimal

solutions (RGNOS), consists of 250 randomly task graphs. The method of generating these

random task graphs is the same as that in RGBOS. However, the sizes of these graphs are

much larger, varying from 50 nodes to 500 nodes with increments of 50. For generating the

complete set of 250 graphs, we varied three parameters: size, communication-to-computation ratio

(CCR), and parallelism. Five different values of CCR were selected: 0.1, 0.5, 1.0, 2.0 and 10.0.

The parallelism parameter determines the width (defined as the largest number of non-

precedence-related nodes in the DAG) of the graph. Five different values of parallelism were

chosen: 1, 2, 3, 4 and 5. A parallelism of 1 means the average width of the graph is , a value

of 2 means the graph has an average width of , and so on. Our main rationale for using

these large random graphs as a test suite is that they contain as their subset a variety of graph

structures. This avoids any bias that an algorithm may have towards a particular graph

structure.

5.5  Traced Graphs

The last set of benchmark graphs, called traced graphs (TG), represent some of the

numerical parallel application programs obtained via a parallelizing compiler [5]. We use two

sets of such graphs: Cholesky factorization and mean value analysis.

6  Performance Results and Comparison
In this section, we present the performance results and comparisons of the 15 scheduling

algorithms which were implemented on a SUN SPARC IPX workstation with all of the

benchmarks described above. The algorithms are compared within their own classes, although

some comparison of UNC and BNP algorithms are also carried out. The comparisons are made

na nb

FT na( ) ST nb( )< na nb

ST nb( ) FT na( )–( )

v

2 v
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using the following six measures.

• Normalized Schedule Length (NSL): The main performance measure of an algorithm is the

schedule length of its output schedule. The NSL of an algorithm is defined as:

where L is the schedule length. It should be noted that the sum of computation costs on the

CP represents a lower bound on the schedule length. Such lower bound may not always be

possible to achieve, and the optimal schedule length may be larger than this bound.

• Pair-Wise and Global Comparisons: In the pair-wise comparison, we measure the number

of times an algorithm produced better, worse or equal schedule length compared to each

other algorithm within the same class. In the global comparison, an algorithm is collectively

compared with all other algorithms in the same class.

• Number of Best Solutions: For a set of experiments, we count the number of times an

algorithm produced the shortest schedule length compared to other algorithms.

• Average Degradation from the Best: When an algorithm does not produce the best schedule

length within its class, we compare its degradation from the best solution. The average

degradation is calculated as the average of this degradations across all such cases.

• Number of Processors Used: The number of processors used is another important measure

of an algorithm and it varies widely for different algorithms. The number of processors used

are measured for the BNP and UNC algorithms. Although the BNP algorithms are designed

for a limited number of processors, their performance depends upon this number. Thus, in

order to make a fair comparison with the objective of producing a better schedule length, all

BNP algorithms were first tested by providing a very large number of processors. The

numbers of processors actually used were then noted.

• Running Time of the Algorithms: The running time of a scheduling algorithm is another

important performance measure because a long running time can severely limit the

scalability of an algorithm.

• Scheduling Scalability (SS): This is a new performance measure defined by us and is

elaborated in Section 6.6. The SS of an algorithm is a collective indicator of whether an

algorithm can scale its performance well for larger problem sizes.

6.1  Results for the Peer Set Graphs

The results of applying the UNC and BNP algorithms to the PSG are shown in Table 5. The

APN algorithms were not applied to this set of example graphs because many network

NSL L
w ni( )

ni CP∈
∑

--------------------------- ,=
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topologies are possible as test cases making a fair comparison quite difficult.

As can be seen from the table, the schedule lengths produced vary considerably, despite

the small sizes of the graphs. This phenomenon is contrary to our expectation that the

algorithms would generate the same schedule lengths for most of the cases. It also indicates

that the performance of various DSAs is more sensitive to the diverse structures of the graphs

rather than their sizes. A plausible explanation for this pathological observation is that the

ineffective scheduling technique employed in some algorithms leads to mistakes made in the

earlier stages of the scheduling process so that long schedule lengths are produced.

Among the UNC algorithms, the DCP algorithm consistently generate the best solutions.

However, there is no single BNP algorithm which outperform all the others. In summary, we

make the following observations:

• The greedy BNP algorithms give very similar schedule lengths as can be seen from the

results of HLFET, ISH, ETF, MCP and DLS.

• Non-greedy and non-CP-based UNC algorithms in general perform worse than the greedy

BNP algorithms.

• CP-based algorithms perform better than non-CP-based ones (DCP, DSC, MD and MCP

perform better than others).

• Among the CP-based algorithms, dynamic-list algorithms perform better than static-list

ones (DCP, DSC and MD in general perform better than MCP).

6.2  Results for RGBOS benchmarks

The results of the UNC and BNP algorithms for the RGBOS benchmarks are shown in

Table 6 and Table 9, respectively. Since optimal solutions for specific network topologies are

not known, the APN algorithms were again not applied to these benchmarks. Table 6 includes

the percentage degradations from the optimal schedule lengths produced by the UNC

algorithms. The overall average degradations for each algorithm are given in the last row. As

can be seen, when CCR is 0.1, both MD and DCP generate optimal solutions for half of the test

Table 5: Scheduling lengths generated by the UNC and BNP algorithms for the PSGs.

Source of task graph

UNC Algorithms BNP Algorithms

LC EZ MD DSC DCP HLFET ISH ETF LAST MCP DLS

Ahmad and Kwok [3] (a 13-node graph) 485 717 430 404 392 454 454 473 445 454 454

Al-Maasarani [7] (a 16-node graph) 44 44 50 49 44 45 45 44 53 45 44

Al-Mouhamed [8] (a 17-node graph) 39 40 38 38 38 41 38 41 43 40 41

Shirazi et al. [38] (a 11-node graph) 39 32 28 30 28 28 33 28 42 33 33

Colin and Chretienne [14] (a 9-node graph) 15 14 15 14 14 14 14 14 14 14 14

Gerasoulis and Yang [19] (a 7-node graph) 25 20 22 18 18 18 18 18 18 21 18

Kruatrachue and Lewis [27] (a 15-node graph) 19 16 11 15 11 11 11 11 15 11 11

McCreary and Gill [30] (a 9-node graph) 212 159 159 160 149 180 180 180 149 180 180

Chung and Ranka [12] (a 11-node graph) 46 42 35 37 35 35 40 35 46 40 40

Wu and Gajski [42] (a 18-node graph) 420 540 420 390 390 390 390 390 470 390 390

Yang and Gerasoulis [43] (a 7-node graph) 19 20 18 16 16 19 16 16 16 16 16
- 17 -



cases, and the overall average degradation is less than 2%. Other algorithms generate optimal

solutions for a few number of cases and the overall average degradation is larger. Among all

the UNC algorithms, the DCP algorithm performs the best.

Table 9 indicates that the BNP algorithms generate fewer optimal solutions compared to

the DCP algorithm. The overall average degradations are also higher than that of the DCP

algorithm. However, compared with other UNC algorithms, the MCP, ETF, ISH, and DLS

algorithms perform better both in terms of the number of optimal solutions generated and the

overall degradations. Among all the BNP algorithms, the MCP algorithm performs the best

while the LAST algorithm performs the worst.

We summarize our observations from Table 6 and Table 9 as follows.

• Greedy BNP algorithms have shown higher capability in generating optimal solutions than

the non-greedy and non-CP-based UNC algorithms with DCP as the only exception.

• CP-based algorithms are clearly better than the non-CP-based ones as can be seen from the

results of DCP and MCP.

6.3  Results for the RGPOS Benchmarks

The results of applying the UNC and BNP algorithms to RGPOS benchmarks are shown in

Table 6 and Table 9, respectively. Since optimal solutions for specific network topologies are

LC EZ MD DSC DCP

0.0 0.0 0.0 0.0 0.0
1.4 4.0 0.5 3.3 4.3
7.8 2.2 0.7 2.5 3.6
0.0 0.9 0.0 0.0 0.0
6.1 5.7 5.8 4.4 3.5
7.0 1.9 3.3 5.6 2.1
5.8 0.0 0.0 0.7 0.0
7.3 2.5 3.7 1.4 1.9
5.2 3.3 0.0 0.1 0.0
7.8 0.0 0.0 4.2 0.0
0.1 1.4 0.0 3.1 0.0
4.6 3.3 1.3 0.4 0.5

2 3 6 2 6

4.4 2.1 1.3 2.1 1.3

0.1CCR

Algorithms

No. of Opt.

Avg. Dev.

10
12
14
16
18
20
22
24
26
28
30
32
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LC EZ MD DSC DCP

5.2 8.7 0.0 0.0 0.0
2.3 6.1 1.9 7.9 2.3
9.4 13.9 5.6 6.4 0.0
8.8 3.6 0.9 0.9 4.3
6.0 1.8 0.0 7.6 0.0
3.8 6.7 4.3 6.0 3.9
0.0 7.8 4.1 0.0 0.0
0.2 1.5 6.6 4.8 4.4
8.3 14.1 9.9 9.6 0.0
2.3 14.9 4.2 10.6 0.0
0.0 12.2 3.7 3.0 0.0
3.5 2.2 1.0 5.3 2.8

2 0 2 2 7

4.1 7.8 3.5 5.2 1.5

1.0

LC EZ MD DSC DCP

3.1 12.7 6.8 9.4 0.8
4.0 7.0 4.0 0.0 0.0
3.7 6.7 9.2 0.0 0.0
14.0 2.2 0.0 3.4 0.0
10.4 19.8 5.8 11.5 2.4
0.3 0.0 2.9 0.2 0.0
1.5 22.6 11.6 3.4 2.2
14.0 6.7 11.2 10.7 0.0
18.1 3.5 7.1 11.4 5.4
20.7 8.9 11.1 13.9 1.1
5.6 7.1 13.5 3.5 11.6
0.9 3.4 0.8 4.2 0.0

0 1 1 2 6

8.0 8.4 7.0 6.0 2.0

10.0

Table 6: The percentage degradations from the optimal solutions of for RGBOS (UNC algorithms).

Table 7: The percentage degradations from the optimal solutions of for RGBOS (BNP algorithms).

HLFET ISH ETF LAST MCP DLS

0.0 2.9 1.4 7.1 3.6 0.0
4.3 2.3 4.4 6.7 3.2 0.0
2.4 1.2 0.2 2.9 0.4 1.2
0.0 3.0 0.0 0.0 3.0 1.6
2.0 0.8 3.5 3.4 5.9 5.6
5.9 2.9 2.6 10.0 0.3 6.0
5.8 0.7 0.1 2.4 1.8 5.4
0.5 4.9 3.2 3.1 4.0 4.1
2.5 0.0 4.5 0.0 1.4 0.0
0.0 6.6 0.4 3.1 0.2 0.4
3.2 2.8 0.0 1.2 2.9 4.8
6.8 0.1 1.3 6.1 3.8 3.2

3 1 2 2 0 3

2.8 2.4 1.8 3.8 2.5 2.7

0.1CCR

Algorithms

No. of Opt.

Avg. Dev.

10
12
14
16
18
20
22
24
26
28
30
32

HLFET ISH ETF LAST MCP DLS

4.2 0.0 9.3 0.0 0.0 0.0
4.2 0.3 0.6 9.9 0.7 5.2
0.0 0.0 0.0 3.8 7.3 4.5
9.5 1.1 0.2 3.2 2.6 7.8
10.5 1.3 0.0 0.0 4.7 1.7
6.9 7.8 2.8 8.3 3.2 3.0
8.8 0.9 2.5 0.2 4.4 2.8
10.9 2.4 2.2 1.4 1.3 4.1
8.4 6.3 6.7 3.8 1.8 1.7
6.7 0.0 4.0 0.0 0.0 8.4
5.1 0.0 5.1 7.6 8.0 2.3
13.6 7.2 5.8 10.3 5.4 0.3

1 4 2 3 2 1

7.4 2.3 3.3 4.0 3.3 3.5

1.0

HLFET ISH ETF LAST MCP DLS

5.2 10.9 7.0 17.1 2.3 2.0
7.4 2.7 0.5 2.7 4.5 0.0
2.2 12.1 7.7 13.8 5.1 0.5
8.0 8.2 1.0 1.2 0.0 4.1
5.1 2.0 8.1 7.3 4.2 0.8
5.7 3.8 3.5 5.7 0.0 8.2
8.0 3.8 0.3 3.0 7.6 5.5
1.5 3.0 0.6 18.8 5.2 4.4
2.2 4.6 9.7 11.7 7.4 1.6
9.0 6.4 6.5 17.5 5.2 4.7
6.9 3.0 5.5 3.4 8.9 13.7
18.0 0.0 7.3 20.6 0.8 0.0

0 1 0 0 2 2

6.6 5.0 4.8 10.2 4.3 3.8

10.0
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not known, the APN algorithms were again not applied to the RGPOS task graphs.

In Table 6, the percentage degradations from the optimal schedule lengths of the UNC

algorithms are shown. The overall average degradations for each algorithm are again shown

in the last row of the table. As can be seen, when CCR is 0.1, the DCP generates optimal

solutions for more than half of the test cases and the overall average degradation is less than

2%. Other algorithms generate optimal solutions for a few number of cases and the overall

average degradation is larger. The percentage degradations in general increase with CCRs.

When CCR is 10.0, none of the UNC algorithms except DCP can generate any optimal

solution.

The results given in Table 9 indicate that the BNP algorithms generate a similar number of

optimal solutions and values of percentage degradations. When CCR is 10.0, none of the BNP

algorithms generates any optimal solutions. In summary, the results of Table 6 and Table 9 lead

to similar conclusions as those made in Section 6.2.

6.4  Results for the RGNOS Benchmarks

Since the optimal solutions for the RGNOS benchmarks are not known, we evaluate and

compare the algorithms with a more extensive range of parameters including graph sizes,

CCRs, and parallelisms.

LC EZ MD DSC DCP

0.8 7.9 5.7 3.5 0.0
2.6 4.5 5.9 6.1 0.6
0.0 11.1 4.9 8.6 0.0
3.1 0.3 0.0 8.3 0.0
0.0 0.0 3.6 0.0 0.0
5.8 3.7 2.8 5.4 5.2
5.5 15.1 0.3 4.2 0.0
0.0 4.8 5.7 2.5 0.0
0.5 7.4 0.0 6.7 0.0
2.2 13.3 2.5 3.7 5.6

3 1 2 1 7

2.0 6.8 3.1 4.9 1.1

0.1CCR

Algorithms

No. of Opt.

Avg. Dev.

50
100
150
200
250
300
350
400
450
500
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LC EZ MD DSC DCP

21.3 9.6 0.8 13.4 17.5
0.0 0.0 4.8 14.8 0.0
0.0 29.9 9.1 9.8 0.0
7.2 20.4 14.3 9.0 5.7
5.8 12.8 7.6 14.9 0.0
18.2 32.2 11.5 4.8 0.0
7.0 0.6 11.5 0.0 0.0
11.4 19.8 1.4 1.7 0.0
11.6 17.9 9.5 22.0 12.6
19.8 27.2 10.7 0.0 0.0

2 1 0 2 7

10.2 17.0 8.1 9.0 3.6

1.0

LC EZ MD DSC DCP

17.6 12.8 2.7 23.6 9.2
11.8 21.5 6.6 19.7 3.4
29.9 17.9 20.7 6.7 10.4
17.1 5.8 5.9 14.1 10.8
4.9 12.4 2.1 14.0 4.8
15.7 4.0 15.0 12.9 13.0
10.2 5.0 4.1 7.9 1.2
29.8 21.3 11.8 2.1 0.6
25.2 21.0 7.5 22.8 0.0
6.7 6.6 8.2 11.5 10.7

0 0 0 0 1

16.9 12.8 8.5 13.5 6.4

10.0

Table 8: The percentage degradations from the optimal solutions of for RGPOS (UNC algorithms).

Table 9: The percentage degradations from the optimal solutions of for RGPOS (BNP algorithms).

HLFET ISH ETF LAST MCP DLS

0.0 7.8 6.8 11.8 1.6 0.0
9.5 2.8 0.9 8.2 2.5 6.9
6.3 3.7 9.1 0.0 7.7 1.3
7.4 0.0 2.9 4.8 0.0 2.8
0.0 0.0 0.0 10.7 0.0 1.2
12.4 7.4 6.5 0.3 4.7 1.9
3.3 4.2 5.6 0.0 6.4 2.4
0.0 7.1 0.0 3.7 2.2 0.0
6.4 0.8 0.0 4.6 0.0 1.8
6.1 2.9 5.0 6.6 7.6 9.5

3 2 3 2 3 2

5.1 3.7 3.7 5.1 3.3 2.8

0.1CCR

Algorithms

No. of Opt.

Avg. Dev.

50
100
150
200
250
300
350
400
450
500

HLFET ISH ETF LAST MCP DLS

13.5 3.8 14.2 23.5 13.8 10.1
4.2 4.3 7.2 0.0 3.2 0.0
10.0 22.1 5.1 12.8 10.0 0.0
2.5 7.7 10.2 14.2 5.1 12.4
16.5 16.2 0.0 0.8 14.2 5.0
0.6 6.3 7.3 16.5 3.6 10.2
20.3 0.0 0.0 17.6 0.0 4.2
5.1 1.1 4.3 7.9 7.1 2.5
2.6 4.9 10.6 9.1 1.0 0.4
6.1 3.5 11.1 25.3 4.8 14.6

0 1 2 1 1 2

8.1 7.0 7.0 12.8 6.3 5.9

1.0

HLFET ISH ETF LAST MCP DLS

4.3 1.0 15.3 13.0 8.1 5.0
5.2 1.9 2.3 10.4 5.8 0.7
3.0 23.9 8.1 20.3 10.3 13.6
3.2 11.1 12.6 22.7 12.1 4.8
9.7 17.5 7.1 11.1 3.8 7.3
3.1 7.7 9.2 3.4 9.0 0.7
28.5 7.3 10.5 29.4 14.0 11.9
2.3 10.6 14.1 18.0 0.9 3.0
18.6 13.7 21.6 20.1 2.2 17.9
7.2 23.8 19.2 3.1 6.9 12.9

0 0 0 0 0 0

8.5 11.8 12.0 15.2 7.3 7.8

10.0
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6.4.1 Comparing Schedule Lengths
The average NSLs for the BNP, UNC, and APN scheduling algorithms are given in Figure

2. Each curve in the plots is the average of 25 tests cases with various CCRs and parallelism.

Figure 2 reveals that the behavior of these algorithms is consistent in terms of their relative

performance for various number of nodes in the graph. Among the BNP scheduling

algorithms, the performance of the MCP algorithm is the best while the LAST algorithm is

outperformed by all other algorithms. We also observe that the NSLs for all the algorithms

show a slightly increasing trend if the task graph size is increased. This is because the

proportion of nodes other than those on the CP increases making it more difficult to achieve

the lower bound. For the UNC scheduling algorithms, we observe that the DCP and MD

algorithms perform significantly better as compared to the rest of the algorithms. The NSLs for

the DSC and LC algorithms are similar.

Although the BNP algorithms are designed for a limited number of processors (as an input

parameter), we ran each algorithm with a very large number of processors such that the

number of processors became virtually unlimited. From this experiment, we noted the average

number of processors used by these algorithms for each graph size (the number of processors

used is shown later in Figure 16). In another experiment, we reduced the number processors to

50% of that average. Since no significant difference in the NSLs as well as the relative

performance of these algorithms can be observed, we do not include those results in this

paper. One possible reason for this phenomenon is that the schedule length is dominated by

Figure 2: Average NSL of the UNC, BNP and APN algorithms for RGNOS benchmarks.

(b) BNP algorithms.(a) UNC algorithms.

(c) APN algorithms.
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s

the scheduling of CP nodes. In the case of a very large number of processors, the non-CP

nodes are spread across many processors, while in the case of a fewer number of processors,

these nodes are packed together without making much impact on the overall schedule length.

For the APN scheduling algorithms, the target architectures included an 8-processor ring,

an 8-processor hypercube, a mesh, and an 8-processor clique. The average NSLs for these

experiments are shown in Figure 2(c). Each point on the curve now represents the average of

100 NSLs. One reason for the much larger NSLs in these cases is that the numbers of

processors used were (intentionally) much smaller. For example, a 500-node task graph is

scheduled to 8 processors†. The results of the APN algorithms suggest that there can be

substantial difference in the performance of these algorithms. For example, significant

differences are observed between the NSLs of BSA and BU. The performance of DLS is

relatively stable with respect to the graph size while MH yields fairly long schedule lengths for

large graphs. As can be seen, the BSA algorithm performs admirably well for large graphs. The

main reason for the better performance of BSA is an efficient scheduling of communication

messages that can have a drastic impact on the overall schedule length. In terms of the impact

of the topology, we find that all algorithms perform better on the networks with more

communication links. However, these results are excluded due to space limitations.

We also measured the average NSLs of the algorithms against CCRs and parallelisms. As

we found that parallelism does not have a significant effect on the NSLs, we have not included

those results here. The average NSLs plotted against CCRs, however, are included and shown

in Figure 2. We can observe that the average NSLs increase slightly when CCR increases from

small to medium range. The increase in average NSLs becomes more palpable when CCR is

large (10.0). This indicates that when the edge-weights are large, the algorithms can make

more mistakes.

6.4.2 Pair-Wise Comparison
Next, we present a pair-wise and a global comparison among all the algorithms by

observing the number of times each algorithm performs better, worse or the same compared to

every other algorithm in 250 test cases. This comparison for the UNC scheduling algorithms is

given in a graphical form shown in Figure 4. Here, each box compares two algorithms: the

algorithm on the left side and the algorithm on the top. Each box contains three numbers

preceded by ‘>’, ‘<‘ and ‘=’ signs indicating the number of times the algorithm on the left

performs better, worse, and the same, respectively, compared to the algorithm shown on the

top. For example, the DCP algorithm performs better than the DSC algorithm in 220 cases,

† The number of processors used by a typical UNC algorithm is very large—the LC algorithm, for instance, use
more than 100 processors for a 500-node task graph

4 2×
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worse in 6 cases and the same in 24 cases. For the global comparison, an additional box

(“ALL”) for each algorithm compares that algorithm with all other algorithms combined.

These results clearly indicate that the DCP algorithm is better than all other algorithms. The

DCP algorithm’s performance is followed by that of the MD algorithm. Both DCP and MD

outperform EZ and LC by a large margin while DSC is marginally better than LC. Based on

these results, we rank these UNC algorithms in the following order: DCP, MD, DSC, LC, and

EZ. Interestingly, this ranking is the same as using the NSLs shown in Figure 2.

The pair-wise and global comparison of BNP scheduling algorithms is depicted in Figure

4. Based on these results, we rank these BNP algorithms in the following order: MCP, ISH,

DLS, HLFET, ETF, and LAST. This ranking essentially indicates the quality of scheduling

based on how often an algorithm performs better than the others.

A comparison between the BNP and UNC algorithms is also carried out, as shown in

Figure 4. Here each BNP algorithm is compared with each UNC algorithm. Similarly, each

UNC algorithm is compared with each BNP algorithm. From this comparison, we can make a

number of interesting observations. Contrary to the intuitive assumption, not all UNC

algorithms are better than the BNP algorithms—only DCP outperforms each BNP algorithm.

On the other hand, the HLFET, ISH, MCP and DLS algorithms outperform each UNC

algorithm except DCP. No BNP algorithm is outperformed by all UNC algorithms.

In the pair-wise comparison of the APN scheduling algorithms shown in Figure 4, BSA

outperforms the other three algorithms in a large number of cases while DLS performs better

Figure 3: Average NSL vs CCR.

(a)UNC algorithms. (b) BNP algorithms.

(c) APN algorithms.
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than MH. The BU algorithm is outperformed by all other algorithms. In terms of performance,

these algorithms can be ranked in the order: BSA, DLS, MH, and BU.

6.4.3 Best Solutions and Degradations from the Best
The Kiviat graphs depicted in Figure 8, Figure 9, and Figure 10 show the number of times

each algorithm yielded the best solution out of 250 test cases (for the ANP scheduling

algorithms, there are 1000 test cases). If the shaded area in a Kiviat graph clusters closely
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Figure 4: A global comparison of the UNC scheduling algorithms in terms
of better, worse and equal performance for the RGNOS benchmarks.
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around the 0% axis, the algorithm generates optimal solutions for most of the cases. In the

category of the UNC scheduling algorithms, the DCP algorithm generates the best solution in

about 90% of the cases. For the BNP scheduling algorithms, the MCP algorithm generates the

best solution for 141 times—which is more than 50% of the number of test cases. Similarly, in

the category of the ANP algorithms, the BSA algorithm generates the best solution in about

60% of the cases. The LAST, EZ, PY, and BU algorithms do not generate the best solution in a

single case.

Next, we compare the average degradation in the schedule length with respect to the best

case. For each of the 250 test cases, we compare the schedule lengths produced by all of the

algorithms in the same class and take the shortest schedule length as the “pseudo-optimal”.

We then take the percentage difference between a longer schedule length and the “pseudo-
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Figure 8: The number of cases with percentage degradation from the best solutions for RGNOS (UNC algorithms).
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18
optimal”. The average percentage degradation is taken as the average of all cases when an

algorithm produces a schedule length longer than “pseudo-optimal”. An algorithm may

perform better than other algorithm in a large number of cases and also generate a good
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Figure 9: The number of cases with percentage degradation from the best solutions for RGNOS (BNP algorithms)
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Figure 10: The number of cases with various ranges of % degradation
from the best solutions for the RGNOS benchmarks (APN algorithms)
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average NSL but it may generate extremely poor schedules in some cases. This measure

essentially indicates how poor an algorithm’s performance is.

Figure 16 depicts the degradation from the best solution for all three classes of the

algorithms. For the UNC algorithms, the percentage degradation is very small for the DCP

algorithm—in the graph it is visible only when the graph size is 50, 100 or 250. The MD and LC

algorithms perform closely and their degradations are usually between 2% to 4%. On the other

hand, the percentage degradations for the EZ and LC algorithms are similar.

We observe that, with the exception of LAST, the percentage degradations for other BNP

algorithms are quite close. We can also see that while there is a great difference between the

performance of the MCP and ETF algorithms shown earlier in Figure 9, the difference between

their percentage degradations are merely about 2 to 3%. This indicates that there can be large

variation in the performance of the MCP algorithm. Similarly, the ISH algorithm sometimes

has a large degradation compared to DLS and HLFET, although it outperforms them by a large

margin when comparing the number of best solutions.

In the case of the APN scheduling algorithms, a large variation shown in Figure 16(c) can

be noticed. The MH, DLS and BSA algorithms generally yield less than 40% variations but the

BU algorithm incurs a considerably large variation which indicates that it can generate

extremely long schedules.

Figure 11: The average percentage degradation from the best solutions for the RGNOS benchmarks.

(a) BNP algorithms. (b) UNC algorithms.

(c) APN algorithms.
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6.4.4 Number of Processors Used
The number of processors used by an algorithm is an important performance measure

especially for the algorithms that are designed for using an unlimited number of processors.

The BNP algorithms are designed for a bounded number of processors, but as explained

earlier, were tested them with a very large number (virtually unlimited number) of processors;

we then noted the number of processors actually used.

Figure 16(a) shows the average number of processors used by the BNP scheduling

algorithms. The DLS algorithm uses the smallest number of processors, even compared to ETF

although both algorithms share similar concepts. The numbers of processors used by the MCP

and ETF algorithms are close. On the other hand, these numbers for the HLFET and ISH are

also similar.

Figure 16(b) shows the average number of processors used by the UNC scheduling

algorithms. As can be seen, the DSC algorithm uses a large number of processors. This is

because it uses a new processor for every node whose start time cannot be reduced on a

processor already in use. The LC and EZ algorithms also use more processors than others

because they pay no attention on the use of processors. In contrast, the DCP algorithm has a

special processor finding strategy: as long as the schedule length is not affected, it tries to

schedule a child to a processor holding its parent even though its start time may not reduce.

The MD algorithm also uses relatively smaller number of processors because, to schedules a

node to a processor, it first scans the already used processors.

6.4.5 Algorithm Running Times
In this section, we compare the running times of all the algorithms. Table 10 shows the

running times of the BNP scheduling algorithms for various number of nodes in the task

graph. Each value in the table again is the average of 25 cases. The MCP algorithm is found to

be the fastest algorithm while DLS and ETF are slower than the rest. The large running times

of the DLS and ETF algorithms are primarily due to exhaustive calculations of the start times

of all of the ready tasks on all of the processors. The running time of LAST and HLFET are also

Figure 12: The average number of processors used for the RGNOS benchmarks.

(a) UNC algorithms. (b) BNP(b) BNP algorithms.
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large while ISH takes reasonable amounts of time. Based on these running time results, the

BNP algorithms can be ranked in the order: MCP, ISH, HLFET, LAST, and (DLS, ETF).

From the running times of UNC scheduling algorithms shown in Table 10, we observe that

the LC and DSC algorithms yield the minimum running time. The running times of MD, EZ

and DCP are close. Based on these running time results, these algorithms can be ranked in the

order: LC, DSC, EZ, DCP, and MD. For the APN scheduling algorithms, the BU algorithm is

found to be the fastest. The running times of the MH and BSA algorithms are close while those

of the DLS algorithm are relatively large. Based on these results, in terms of running times,

these algorithms can be ranked in the order: BU, BSA, MH, and DLS.

6.5  Results for Traced Graphs

For the two sets of traced graphs (TG) representing two parallel numerical applications,

Cholesky factorization and mean value analysis, the results are shown in Figure 16 and Figure

16, respectively. Since these applications operate on matrices, the graph sizes depend on the

matrix dimensions. For a matrix dimension of , the graph size is . We varied matrix

dimensions from 19 to 64 with increments of 5 and consequently the graph sizes varied from

about 200 to 1600.

We note that for both applications, the performance of the BNP algorithms is quite similar

with the exception that LAST performs much worse. By contrast, the performance of the UNC

algorithms is much diverse. The relative performance of the APN algorithms is quite similar

for both applications.

6.6  Scheduling Scalability (SS)

The objective of scheduling scalability (SS) of a DSA is to capture the combined

effectiveness of a DSA in terms of its solution quality, the number of processors used, and its

running time in finding the solution. The SS of a DSA is defined as:

HLFET ISH ETF LAST MCP DLS

0.1 0.1 0.1 0.2 0.1 0.1
0.4 0.1 0.3 0.5 0.1 0.3
0.7 0.2 0.7 1.1 0.1 0.8
1.1 0.4 1.3 2.0 0.2 1.4
1.7 0.6 3.4 3.5 0.3 3.2
2.2 0.9 5.0 5.0 0.4 4.8
3.0 1.2 7.9 7.2 0.6 7.5
3.5 1.5 10.3 9.3 0.7 9.4
4.5 2.1 17.5 12.7 0.9 16.4
5.4 2.5 20.2 16.4 1.1 17.9

Graph Sizes

50
100
150
200
250
300
350
400
450
500

LC EZ MD DSC DCP

0.1 0.4 0.5 0.1 0.4
0.1 1.2 1.3 0.1 1.1
0.2 3.2 3.6 0.2 3.1
0.3 5.4 6.4 0.3 5.6
0.4 9.6 10.3 0.5 9.2
0.6 13.8 14.6 0.7 13.9
0.8 20.8 22.3 1.0 21.8
1.0 31.6 36.9 1.2 32.1
1.3 43.9 47.9 1.8 44.6
1.6 52.3 63.5 2.3 58.6

Table 10: Average running times (in seconds) for all the algorithms using the RGNOS benchmarks.

0.3 1.8 0.2 0.1
1.8 17.5 1.5 0.1
6.1 77.6 5.3 0.2
13.8 181.8 11.5 0.4
28.5 473.6 22.7 1.0
44.9 799.5 36.7 1.6
72.2 1329.6 57.1 2.5
93.6 2093.9 79.5 3.7
132.5 3342.2 103.6 5.7
189.3 4334.8 147.0 7.7
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where L is the schedule length and t is the running time of the scheduling algorithm.

The first factor in SS is the speedup of the schedule, which measures the quality of

solution. The second factor, called the processors scalability, measures the effectiveness in using

processors. The third factor, called the running-time scalability, is determined as follows. The

Figure 13: Average NSL for Cholesky factorization task graphs.

(a) UNC algorithms. (b) BNP algorithms.

(c) APN Algorithms.

Figure 14: Average NSL for mean value analysis task graphs.

(a) UNC algorithms. (b) BNP algorithms.

(c) APN algorithms.
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ratio of the logarithms of the graph size and running time effectively measures the exponents

of the complexity of the algorithms. For example, suppose an algorithm has a complexity

, then:

where and are constants. Thus, using the running-time scalability, we can compare the

relative running times of scheduling algorithms more accurately.

If an algorithm generates short schedules with a large number of processors and long

running times, its SS will have a small value. On the other hand, the SS of a fast algorithm,

which generates moderately long schedules using a small number of processors, will have a

large value. To attain a high value of SS, an algorithm must simultaneously achieve the

conflicting goals of good solution quality, efficient use of resources, and low time-complexity.

We first separately examine the speedups, processors scalability, and running-time

scalability of the UNC and BNP algorithms for the RGNOS benchmarks (see Figure 15). As can

be seen, the speedups of the all the algorithms yield similar patterns. The speedups increase

with the graph sizes because a larger graph has a higher parallelism. The processors

scalabilities, on the other hand, are much diverse. Among the UNC algorithms, MD and DCP

perform dramatically better than the others because their strategies in using processors are

more economical. The DSC and LC algorithms use processors, as we have seen earlier in

Figure 16. For the BNP algorithms, the processors scalabilities differ by a small margin, with

the exception of ISH which also uses processors. For running-time scalabilities, LC and

DSC perform the best among the UNC algorithms. For the BNP algorithms, MCP

demonstrates considerably higher running-time scalability than the others.

The SS plots of the UNC and BNP algorithms are shown in Figure 16. We can observe that

combining the three factors, the SS of DCP is the best among all the UNC algorithms. The SS of

MD is also quite high among the other UNC algorithms. The SS of DSC shows a decreasing

trend with the increasing graph size, while the values of SS of other UNC algorithms show an

increasing trend. For the BNP algorithms, the SS of MCP is much higher than the others

indicating that it is highly scalable. Indeed, the SS of MCP is even slightly higher than that of

DCP. The other BNP algorithms, with the exception of ISH, have very similar values SS.

7  Conclusions and Future Work
In this paper, we have presented the results of an extensive performance study of 15 DSAs.

Our study has revealed several important findings:

• For both the BNP and UNC classes, algorithms emphasizing the accurate scheduling of
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nodes on the critical-path are in general better than the other algorithms.

• Dynamic critical-path is better than static critical-path, as demonstrated by both the DCP

and DSC algorithms.

• Insertion is better than non-insertion—for example, a simple algorithm such as ISH

employing insertion can yield dramatic performance.

(a) Speedups of UNC algorithms. (b) Speedups of BNP algorithms.

(c) Processors scalability of UNC algorithms. (d) Processors scalability of BNP algorithms.

(e) Running-time scalability of UNC algorithms. (f) Running-time scalability of BNP algorithms.

Figure 15: The speedups, processors scalability and running-time scalability of UNC and BNP algorithms.

Figure 16: Scheduling scalability.

(a) UNC algorithms. (b) BNP algorithms.
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• Dynamic priority is in general better than static priority, although it can cause substantial

complexity gain—for example the DLS and ETF algorithms have higher complexities.

However, this is not always true—one exception, for example, is that the MCP algorithm

using static priorities performs the best in the BNP class.

We have provided a set of benchmarks which provide a variety of test cases including two

kinds of graphs with optimal solutions. These can be good test cases for evaluating and

comparing future algorithms.

We have also proposed a performance measure called the scheduling scalability. To attain a

high scheduling scalability, a DSA has to achieve the conflicting goals of good solution quality,

efficient utilization of processors, and short running times. Indeed, we find that while the DCP

algorithm produces much shorter schedules than the MCP algorithm, both algorithms have

similar scheduling scalability because the time-complexity of the MCP algorithm is lower. To

achieve a higher scheduling scalability, the time-complexity of a DSA must be reduced

without compromising its solution quality.

The current research concentrates on further elaboration of various techniques, such as

reducing the scheduling complexities, improving computation estimations, and incorporating

network topology and communication traffic. A promising avenue for solving the first two

problems is by parallelizing static scheduling on the target parallel machine where the user

program execute [3], [29].

In UNC algorithms, clusters obtained through scheduling are assigned to a bounded

number of processors. All nodes in a cluster must be scheduled to the same processor. This

property makes the cluster scheduling algorithms more complex than the standard BNP

scheduling algorithms. Two such algorithms called Sarkar’s assignment algorithm and Yang’s

RCP algorithm are described in [37] and [43], respectively. Sarkar’s algorithm combines the

cluster merging and ordering nodes into one step, considering the execution order. RCP

merges clusters without considering the execution order, which may lead to a poor decision on

merging. However, RCP has a lower complexity. Both algorithms are simple and do not utilize

the information provided by the UNC scheduling. Generally, cluster scheduling is a relatively

unexplored area. More effective algorithms are to be designed. It would be an interesting

study to compare the BNP approach with the UNC+CS approach.

The APN algorithms can be fairly complicated because they take into account more

parameters. Further research is required in this area, and the effects of topology and routing

strategy need to be determined.
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